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Dimensional reduction in a model with infinitely many absorbing states
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Using the Monte Carlo method, we study a two-dimensional model with infinitely many absorbing states.
Our estimation of the critical exponentb;0.273~5! suggests that the model belongs to the~111! rather than to
~211! directed-percolation universality class. We also show that for a large class of absorbing states the
dynamic Monte Carlo method leads to spurious dynamical transitions.@S1063-651X~99!50112-8#
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Recently, nonequilibrium phase transitions have be
very intensively studied. To some extent this is motivated
their various potential applications ranging from catalysis@1#
to epidemic processes@2# to interfacial behavior in random
media @3#. Another motivation is a desire to classify a ric
behavior of these systems into some universality classes
manner resembling a relatively complete classification
equilibrium phase transitions. The basic idea of such an
proach is to identify a parameter that determines to wh
universality class the model actually belongs, such as, e
dimensionalities of the order parameter and of the emb
ding space for the equilibrium phase transitions. It was
ready suggested that for nonequilibrium models the co
sponding parameter might be the number of absorbing st
and in particular models with a single absorbing state sho
belong to the so-called directed-percolation~DP! universality
class@4#. Up to now there has been ample numerical e
dence in support of this conjecture@5#.

There are also some indications that certain other mo
might belong to the so-called parity-conserving universa
class and most likely, models with two absorbing states
long to this class@6,7#. Little is known, however, about fur
ther classification of models with finitely many absorbi
states.

Models with infinitely many absorbing states constitute
important class. Such models@8,10–12# arise mainly in the
PRE 601063-651X/99/60~6!/6255~4!/$15.00
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study of surface catalysis, but recently these models w
related also to self-organized criticality@13# or biological
evolution@14#. The critical behavior of these models is ve
interesting. In the one-dimensional case, steady-state e
nents have~111! DP values but certain dynamical exponen
remain nonuniversal. However, some scaling arguments
ported by numerical results suggest that the sum of th
dynamical exponents is the same as in the~111! DP case
@15#.

In the two-dimensional case, fewer results are availa
and they are less accurate. For example, for the so-ca
dimer-dimer model Albano’s estimations of the expone
b;0.5 describing the behavior of the order parameter
marginally consistent withbDP

2 50.592 of the ~211! DP
@16#. Similar calculations for the dimer-trimer model@8,17#
and for a certain variant of a sandpile model@13# also sug-
gest the~211! DP universality class. Moreover, there a
some renormalization-group arguments that models with
finitely many absorbing states should belong to the DP u
versality class, at least with respect to the steady-state p
erties@9#. The result that does not seem consistent with
~211! DP, namely,b;0.220.22, was reported by Yaldram
et al. for a certain model of CO-NO catalytic reaction@10#.
However, it was suggested by Jensen that their calculat
were not accurate enough and additional calculations h
shown that also in this case the model exhibits the~211! DP
R6255 © 1999 The American Physical Society



o

ho
a
n

t

ra
bi
b-
n

e

o
in

ca
r

i
f

e
um
p

s
on
e

te
ar
in
ic
el
io
o-
th
in

e
-

ver
et

ions
d

lat-
er-

r

It is
infi-

les
cu-

n
tem
rly

he

e
e

, on

rties

oth
ents
y

RAPID COMMUNICATIONS

R6256 PRE 60ADAM LIPOWSKI
critical behavior@12#. Indeed, Jensen calculated a number
exponents and all of them were consistent with the~211! DP
universality class. However, to estimate the exponentb and
show that it is also consistent with the~211! DP universality
class, he used the so-called dynamic Monte Carlo met
combined with some scaling relations, and such an appro
is fundamentally different from the steady-state calculatio
by Yaldramet al. To refute the results of Yaldramet al., we
would have to be sure that indeed both approaches yield
same results. Although the dynamic Monte Carlo method
very frequently used and provides one of the most accu
estimations of critical parameters, its extent and applica
ity, especially concerning models with infinitely-many a
sorbing states, is not, in our opinion, firmly established a
further examples either supporting or contradicting the us
this method would be very desirable.

In the present Rapid Communication, we study the tw
dimensional version of a certain model that recently was
troduced in the context of biological evolution@14#. This
model has infinitely many absorbing states and its criti
behavior in one dimension@14# is in agreement with othe
models of this kind. Namely, the critical exponentb;0.273,
describing the density of an active phase, is very close to
~111! DP counterpartbDP

1 ;0.2765@18# and also the sum o
dynamical exponentsh andd is universal~with respect to the
choice of an absorbing state! and close to the DP value. W
show, however, that in two dimensions the model has a n
ber of unexpected features. First, our estimation of the ex
nent b;0.273~5! is clearly different from its~211! DP
counterpartbDP

2 ;0.592 @19#. This value strongly suggest
that in the steady state, due to a rather puzzling dimensi
reduction, the critical behavior of the two-dimensional mod
is the same as that of its one-dimensional analog@20#. More-
over, we show that the applicability of the dynamic Mon
Carlo method to this model is highly questionable. In p
ticular, we show that there exists a large class of absorb
states for which this method reproduces spurious dynam
transitions. We expect that some other models with infinit
many absorbing states might also exhibit similar behav
Indeed, it was shown by Dickman that for certain tw
dimensional models the estimation of critical point using
dynamic Monte Carlo method depends on the choice of

FIG. 1. Density of active sitesp as a function ofr calculated for
L550 ~n!, 100 ~L!, and 200~1!.
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tial configuration and, in general, is different from th
steady-state estimation@21#. However, the reported differ
ence was quite small~at most 4%! and analysis of critical
behavior is presumably affected by certain strong crosso
effects@22#. Similar small differences were reported for y
another model with infinitely many absorbing states@23#. In
the results reported below the difference between estimat
of critical point using the dynamical Monte Carlo metho
and steady-state method might be as large as 30%.

Our model is defined on a two-dimensional Cartesian
tice. Omitting the biological interpretation, we assign a c
tain numberwi , j to the bond connecting sitesi andj such that
0,wi , j,1. Introducing a certain parameterr, we define the
dynamics of our model as follows@14#. ~i! Choose a sitei at
random.~ii ! Calculatev5( jwi , j , where summation is ove
all nearest neighborsj of the site i. ~iii ! If v.r , then the
chosen sitei is active and all bond variableswi , j are replaced
by the new ones, chosen randomly. Ifv,r , the chosen site
is nonactive and its bond variables remain unchanged.
obvious from the above rules that the model possesses
nitely many absorbing states.

Since a computational implementation of the above ru
is straightforward, we present only the results of our cal
lations. First we measured the densityp of active sites~i.e.,
those withv.r ) in the steady state. The initial configuratio
of bonds is chosen randomly. Our results for various sys
sizesL are shown in Figs. 1 and 2. These results clea
indicate the phase transition separating the active (p.0) and
absorbing (p50) phases of the model. Assuming that in t
vicinity of the transition the densityp has a power-law sin-
gularity p;(r c2r )b and using the least-square method, w
estimater c51.3867(5) andb50.273~5!. These estimates ar
based on the results forL5200, but the estimation ofb
based on results forL5100 is very similar. ForL5200 we
made runs of 105 Monte Carlo steps neglecting for eachr
data from the initial 104 Monte Carlo steps. A Monte Carlo
step is defined in a standard way, namely, as a single
average, update per site.

Our results show that as far as the steady-state prope
are concerned, this model does not belong to the~211! DP
universality class. They instead strongly suggest that b
one- and two-dimensional versions have the same expon
b as the~111! DP. At present we do not understand wh

FIG. 2. Logarithmic plot of densityp as a function of (r c2r )
for L5200 andr c51.3867.
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such a dimensional reduction takes place.
In our opinion, the model of Yaldramet al. might have

the same critical exponentb as our model~i.e., we suggest
that their calculations were inaccurate but not as much
suggested by Jensen!. Thus, why do Jensen’s dynam
Monte Carlo calculations@12# yield the~211! DP behavior?
Although at present we cannot locate the cause of these
consistencies, below we show that the dynamic Monte C
method requires serious reconsiderations when applie
models with infinitely many absorbing states.

The idea of the dynamic Monte Carlo method is to set
model initially in one of the absorbing states with a seed
the active phase in the center of the system and study
subsequent spreading of activity. One expects that for a
tain value of the control parameter of the model various ch
acteristics of spreading will exhibit a power-law scalin
Moreover, there is considerable numerical support, ma
from studying one-dimensional models, that such a dyna
cal critical point coincides with the steady-state critical po
independently of the choice of absorbing state. We sh
however, that for two-dimensional models this is not the c
and the choice of the absorbing state strongly affects
location and nature of the dynamical transition in the mod

First, let us consider a trivial example, where as an
sorbing state we have chosen a state withwi , j5w050 for all
bonds except the bonds surrounding a certain site, wh
are chosen such that this site is active. It is easy to rea
that for r .1 the activity cannot spread beyond this sing
site and the system quickly returns to the absorbing state.
do not present numerical data but we have checked tha
r ,1 the activity usually spreads throughout the whole s
tem, which indicates that the system is in the active pha
With such a choice of absorbing state,r 51 is the point
which separates the active and absorbing regimes of
model. Although trivial, this is an example of an absorbi
state for which the dynamical transition (r 51) does not co-
incide with the steady-state one (r 51.3867). It is also easy
to see that any absorbing state withw0P0,(r c21)/3 also
yields spurious dynamical transitions basically due to
same mechanism.

FIG. 3. The logarithmic plot of the number of active sitesN(t)
as a function of timet for ~from the top to the bottom! r 51.42,
1.43, 1.44, 1.45, 1.46, and 1.47.
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It is also natural to expect that such spurious transitio
will appear even when some inhomogeneous absorb
states are considered. As an example, let us consider an
sorbing state where all bondswi , j are chosen randomly from
the interval~0,0.1!. Using our previous analyses for homo
geneous absorbing states one can see that for such a c
of an absorbing state the dynamic transition must take p
at r c

dP(1,1.3) and numerical simulations@24# show that in-
deedr c

d51.21(1), which is well below the steady-state crit
cal point r c51.3867.

In the above examples the bond variables were set to
values and thus the active phase was strongly suppres
Setting bond variables to large values~but such that their
sums for each site do not exceed the thresholdr ), we can
construct absorbing states where the absorbing phase is
pressed. As an example, let us consider the case ofw0
50.25. Setting a central site in the active state, we measu
the number of active sitesN(t) as a function of timet
and the results in the logarithmic scale for variousr are
shown in Fig. 3~average is taken over all runs!. The number
of independent runs varied from 200 forr 51.42 to 10 000
for r 51.47. It is essential in this type of simulation to ensu
that the propagating activity never reaches the border
the lattice; for example, forr 51.45 we have to useL
51500. It is also essential to keep a list of active sites, si
they constitute only a small fraction of all sites. One can s
that r 51.45(1) is a point which separates two regimes w
an asymptotically increasing and decreasing number of
tive sites. Why forr c,r ,1.45, i.e., in the absorbing phas
might the activity spread for the infinitely long time?~Of
course, the activity can spread for the infinitely long tim
also for r ,r c , but that is justifiable since for suchr the
system is in the active phase.! The reason for that is the
unstable character of the absorbing state: large value
bond variables considerably ease spreading of activity.
example of such a propagating structure forr 51.42 is shown
in Fig. 4 . We put asingle site in the center of the 100
31000 lattice in the active state and recorded the configu

FIG. 4. Active sites~dots! propagating in thew050.25 absorb-
ing state forr 51.42. A single active site was placed in the midd
of the 100031000 lattice and the configuration shown was record
after timet51000.
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tion after timet51000. One can see that the activity is r
stricted only to the gradually increasing boundary of suc
structure. But this is not surprising: forr 51.42 the model is
in the absorbing phase and activity in the center dies out a
some transient time, which is needed for the system to fin
stable absorbing state. One can also say that once su
structure has spread to infinity, an unstable absorbing sta
transformed into the stable one. Let us also notice that
asymptotic slopes in Fig. 3 forr<1.45 seem to be the sam
and slightly larger than unity. It suggests that structures
that shown in Fig. 4 might be fractals with the fractal dime
sion greater than unity and that this fractal dimension mi
be universal~i.e., independent ofr ). Similar propagating
structures were observed also for other models with abs
ing states@21,22#.

We expect thatw050.25 is not the only value for which
the absorbing phase is suppressed and spurious dyna
transition is obtained. Similar results should be obtained a
r-
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when a large-w absorbing state contains some inhomoge
ity ~i.e., bonds are random variables from a certain rang!.
But we also expect that there exists a large class of absor
states which are in some sense in between these two extr
classes examined above and for which the dynamic Mo
Carlo method will correctly locate the critical point. How
ever, it means that in this method the choice of absorb
state is very important and presumably it is very difficult
predict whether a given absorbing state will lead to a sp
ous or true critical point.

In his calculations Jensen@12# used so-called typical ab
sorbing states, which most likely correspond to our
between states and which most likely correctly reproduce
transition point and yield the~211! DP exponents. We can
only suggest that it is these extremal absorbing states
affect the steady-state dynamics and are responsible for
change of the universality class of our model.
es,
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