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Using the Monte Carlo method, we study a two-dimensional model with infinitely many absorbing states.
Our estimation of the critical exponeft-0.2735) suggests that the model belongs to the 1) rather than to
(2+1) directed-percolation universality class. We also show that for a large class of absorbing states the
dynamic Monte Carlo method leads to spurious dynamical transiti@i€63-651X99)50112-§

PACS numbd(s): 05.90+m

Recently, nonequilibrium phase transitions have beerstudy of surface catalysis, but recently these models were
very intensively studied. To some extent this is motivated byrelated also to self-organized criticaliffL3] or biological
their various potential applications ranging from catalyéils  evolution[14]. The critical behavior of these models is very
to epidemic processdg] to interfacial behavior in random interesting. In the one-dimensional case, steady-state expo-
media[3]. Another motivation is a desire to classify a rich nents haveé1+1) DP values but certain dynamical exponents
behavior of these systems into some universality classes inr@main nonuniversal. However, some scaling arguments sup-
manner resembling a relatively complete classification ofported by numerical results suggest that the sum of these
equilibrium phase transitions. The basic idea of such an apdynamical exponents is the same as in the 1) DP case
proach is to identify a parameter that determines to whici15].
universality class the model actually belongs, such as, e.g., In the two-dimensional case, fewer results are available
dimensionalities of the order parameter and of the embedand they are less accurate. For example, for the so-called
ding space for the equilibrium phase transitions. It was aldimer-dimer model Albano’s estimations of the exponent
ready suggested that for nonequilibrium models the corre8~0.5 describing the behavior of the order parameter are
sponding parameter might be the number of absorbing statesarginally consistent withB%,jz 0.592 of the(2+1) DP
and in particular models with a single absorbing state shoul@l16]. Similar calculations for the dimer-trimer mode,17]
belong to the so-called directed-percolati@®P) universality  and for a certain variant of a sandpile mofi&8] also sug-
class[4]. Up to now there has been ample numerical evi-gest the(2+1) DP universality class. Moreover, there are
dence in support of this conjectufg]. some renormalization-group arguments that models with in-

There are also some indications that certain other modelnitely many absorbing states should belong to the DP uni-
might belong to the so-called parity-conserving universalityversality class, at least with respect to the steady-state prop-
class and most likely, models with two absorbing states beerties[9]. The result that does not seem consistent with the
long to this clas$6,7]. Little is known, however, about fur- (2+1) DP, namely,3~0.2—-0.22, was reported by Yaldram
ther classification of models with finitely many absorbing et al. for a certain model of CO-NO catalytic reacti¢h0].
states. However, it was suggested by Jensen that their calculations

Models with infinitely many absorbing states constitute anwere not accurate enough and additional calculations have
important class. Such mod€|l8,10—13 arise mainly in the shown that also in this case the model exhibits(thel) DP
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! for L=200 andr.=1.3867.

FIG. 1. Density of active siteg as a function of calculated for
L=50 (A), 100(<), and 200(+).

tial configuration and, in general, is different from the
critical behavior{12]. Indeed, Jensen calculated a number ofsteady-state estimatiof21]. However, the reported differ-
exponents and all of them were consistent withhel) DP  ence was quite smallat most 4% and analysis of critical
universality class. However, to estimate the expongand  behavior is presumably affected by certain strong crossover
show that it is also consistent with tk@+1) DP universality — effects[22]. Similar small differences were reported for yet
class, he used the so-called dynamic Monte Carlo methodnother model with infinitely many absorbing staf23]. In
combined with some scaling relations, and such an approadhe results reported below the difference between estimations
is fundamentally different from the steady-state calculationf critical point using the dynamical Monte Carlo method
by Yaldramet al. To refute the results of Yaldraet al, we  and steady-state method might be as large as 30%.
would have to be sure that indeed both approaches yield the Our model is defined on a two-dimensional Cartesian lat-
same results. Although the dynamic Monte Carlo method igice. Omitting the biological interpretation, we assign a cer-
very frequently used and provides one of the most accurat&in numbemw; ; to the bond connecting sitéandj such that
estimations of critical parameters, its extent and applicabilO<w; ;<1. Introducing a certain parameterwe define the
ity, especially concerning models with infinitely-many ab- dynamics of our model as followd4]. (i) Choose a sité at
sorbing states, is not, in our opinion, firmly established andandom.(ii) Calculatew=ZX;w; ;, where summation is over
further examples either supporting or contradicting the use oéll nearest neighborp of the sitei. (i) If w>r, then the
this method would be very desirable. chosen site is active and all bond variableg ; are replaced
In the present Rapid Communication, we study the two-by the new ones, chosen randomly«fr, the chosen site
dimensional version of a certain model that recently was inis nonactive and its bond variables remain unchanged. It is
troduced in the context of biological evolutidd4]. This  obvious from the above rules that the model possesses infi-
model has infinitely many absorbing states and its criticahitely many absorbing states.
behavior in one dimensiofil4] is in agreement with other Since a computational implementation of the above rules
models of this kind. Namely, the critical expong®it0.273, s straightforward, we present only the results of our calcu-
describing the density of an active phase, is very close to itfations. First we measured the dengitpf active sites(i.e.,
(1+1) DP counterparB5,~0.2765[18] and also the sum of those withw>r) in the steady state. The initial configuration
dynamical exponentg anddis universalwith respect to the of bonds is chosen randomly. Our results for various system
choice of an absorbing statand close to the DP value. We sizesL are shown in Figs. 1 and 2. These results clearly
show, however, that in two dimensions the model has a numindicate the phase transition separating the actwe @) and
ber of unexpected features. First, our estimation of the expaabsorbing p=0) phases of the model. Assuming that in the
nent 8~0.2735) is clearly different from its(2+1) DP  vicinity of the transition the densitp has a power-law sin-
counterpartﬂ%p~0.592 [19]. This value strongly suggests gularity p~(r.—r)# and using the least-square method, we
that in the steady state, due to a rather puzzling dimension&stimater .= 1.3867(5) angB=0.2735). These estimates are
reduction, the critical behavior of the two-dimensional modelbased on the results fdr=200, but the estimation oB
is the same as that of its one-dimensional ang®fj. More-  based on results fdr=100 is very similar. FoL. =200 we
over, we show that the applicability of the dynamic Monte made runs of 10 Monte Carlo steps neglecting for each
Carlo method to this model is highly questionable. In par-data from the initial 16 Monte Carlo steps. A Monte Carlo
ticular, we show that there exists a large class of absorbingtep is defined in a standard way, namely, as a single, on
states for which this method reproduces spurious dynamicalverage, update per site.
transitions. We expect that some other models with infinitely Our results show that as far as the steady-state properties
many absorbing states might also exhibit similar behaviorare concerned, this model does not belong to(ghel) DP
Indeed, it was shown by Dickman that for certain two- universality class. They instead strongly suggest that both
dimensional models the estimation of critical point using theone- and two-dimensional versions have the same exponents
dynamic Monte Carlo method depends on the choice of ini8 as the(1+1) DP. At present we do not understand why
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FIG. 3. The logarithmic plot of the number of active sité)

as a function of time for (from the top to the bottojnr =1.42, FIG. 4. Active sitegdots propagating in thevy=0.25 absorb-

1.43, 1.44, 1.45, 1.46, and 1.47. ing state forr =1.42. A single active site was placed in the middle
of the 1000 1000 lattice and the configuration shown was recorded
after timet=1000.

such a dimensional reduction takes place.

In our opinion, the model of Yaldrarat al. might have ) _ .
the same critical exponentt as our modeli.e., we suggest It is also natural to expect thajc such spurious transmo_ns
that their calculations were inaccurate but not as much a¥ill appear even when some inhomogeneous absorbing
suggested by JensenThus, why do Jensen’s dynamic state_s are considered. As an example, let us consider an ab-
Monte Carlo calculationfl2] yield the(2+1) DP behavior? ~Sorbing state where all bondsg ; are chosen randomly from
Although at present we cannot locate the cause of these idbe interval(0,0.1. Using our previous analyses for homo-
consistencies, below we show that the dynamic Monte Carl@eneous absorbing states one can see that for such a choice
method requires serious reconsiderations when applied tf an absorbing state the dynamic transition must take place
models with infinitely many absorbing states. atrie(1,1.3) and numerical simulatiofi24] show that in-

The idea of the dynamic Monte Carlo method is to set thedeedr=1.21(1), which is well below the steady-state criti-
model initially in one of the absorbing states with a seed ofcal pointr.=1.3867.
the active phase in the center of the system and study the In the above examples the bond variables were set to low
subsequent spreading of activity. One expects that for a ceralues and thus the active phase was strongly suppressed.
tain value of the control parameter of the model various charSetting bond variables to large valuésut such that their
acteristics of spreading will exhibit a power-law scaling. sums for each site do not exceed the threshdldwe can
Moreover, there is considerable numerical support, mainlyconstruct absorbing states where the absorbing phase is sup-
from studying one-dimensional models, that such a dynamipressed. As an example, let us consider the case pf
cal critical point coincides with the steady-state critical point=0.25. Setting a central site in the active state, we measured
independently of the choice of absorbing state. We showthe number of active sitedl(t) as a function of timet
however, that for two-dimensional models this is not the caseand the results in the logarithmic scale for variaugre
and the choice of the absorbing state strongly affects thehown in Fig. 3(average is taken over all rung’he number
location and nature of the dynamical transition in the modelof independent runs varied from 200 for=1.42 to 10 000

First, let us consider a trivial example, where as an abfor r=1.47. It is essential in this type of simulation to ensure
sorbing state we have chosen a state with=w,=0 forall  that the propagating activity never reaches the border of
bonds except the bonds surrounding a certain site, whicthe lattice; for example, for=1.45 we have to usd
are chosen such that this site is active. It is easy to realize-1500. It is also essential to keep a list of active sites, since
that forr>1 the activity cannot spread beyond this singlethey constitute only a small fraction of all sites. One can see
site and the system quickly returns to the absorbing state. Wibatr =1.45(1) is a point which separates two regimes with
do not present numerical data but we have checked that fan asymptotically increasing and decreasing number of ac-
r<1 the activity usually spreads throughout the whole systive sites. Why for .<r<1.45, i.e., in the absorbing phase,
tem, which indicates that the system is in the active phasanight the activity spread for the infinitely long timg®f
With such a choice of absorbing states=1 is the point course, the activity can spread for the infinitely long time
which separates the active and absorbing regimes of thalso forr<r., but that is justifiable since for suchthe
model. Although trivial, this is an example of an absorbingsystem is in the active phaselhe reason for that is the
state for which the dynamical transition=1) does not co- unstable character of the absorbing state: large values of
incide with the steady-state one=1.3867). It is also easy bond variables considerably ease spreading of activity. An
to see that any absorbing state witlye0,(r.—1)/3 also example of such a propagating structurerferl.42 is shown
yields spurious dynamical transitions basically due to theén Fig. 4 . We put asingle site in the center of the 1000
same mechanism. X1000 lattice in the active state and recorded the configura-
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tion after timet=1000. One can see that the activity is re- when a largex absorbing state contains some inhomogene-
stricted only to the gradually increasing boundary of such aty (i.e., bonds are random variables from a certain range
structure. But this is not surprising: for=1.42 the model is  But we also expect that there exists a large class of absorbing
in the absorbing phase and activity in the center dies out aftestates which are in some sense in between these two extremal
some transient time, which is needed for the system to find glasses examined above and for which the dynamic Monte
stable absorbing state. One can also say that once suchcrlo method will correctly locate the critical point. How-
structure has spread to infinity, an unstable absorbing state is;er, it means that in this method the choice of absorbing
transformed into the stable one. Let us also notice that thgiie is very important and presumably it is very difficult to

asymptotic slopes in Fig. 3 far<1.45 seem to be the same pregict whether a given absorbing state will lead to a spuri-
and slightly larger than unity. It suggests that structures likg ;s or true critical point.

that shown in Fig. 4 might be fractals with the fractal dimen- | 1. o 1culations Jensdii2] used so-called typical ab-
sion greater than unity and that this fractal dimension migh%orbing states, which most likely correspond to our in-
be universal(i.e., independent of). Similar propqgatlng between states and which most likely correctly reproduce the
structures were observed also for other models with absork{?ansition point and yield thé2+1) DP exponents. We can
mgV\S/:aa:aex%it’tztﬂéw —0.25 is not the only value for which only suggest that it is these extremal absorbing states that
o @a{ ect the steady-state dynamics and are responsible for the

transition is obtained. Similar results should be obtained alsGN@nge of the universality class of our model.
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